the 99 problems
(require 'ob-haskell)
(require 'ob-clojure)
:set +m
List
1. Find the last element
last [1, 2, 3, 4]
4
2. Find the but last element
last . init $ [1,2,3,4]
3
3. find kth element
[1,2,3,4,5] !! 2
3
4. length
length [1,2,3,4,5]
5
5. reverse list
reverse [1,2,3,4,5]
5 | 4 | 3 | 2 | 1 |
6. palindrome
let isPalindrome a = reverse a == a
isPalindrome [1,2,3,2,1]
True
7. flatten list
:set +m
data NestedList a = Elem a | List [NestedList a]
let flatten (List []) = []
flatten (Elem a) = [a]
flatten (List (x:xs)) = flatten x ++ flatten (List xs)
flatten (List [Elem 1, List [Elem 2, List [Elem 3, Elem 4], Elem 5]])
Prelude> [1,2,3,4,5]
8. compress
import Data.List
map head $ group "aaaabccaadeeee"
abcade
9. pack
group ['a', 'a', 'a', 'a', 'b', 'c', 'c', 'a', 'a', 'd', 'e', 'e', 'e', 'e']
Prelude Data.List| ["aaaa","b","cc","aa","d","eeee"]
10. encode
map (\n -> (head n, length n)) $ group "aaaabccaadeeee"
a | 4 |
b | 1 |
c | 2 |
a | 2 |
d | 1 |
e | 4 |
11. Modified run-length encoding.
:set +m
import Data.List
data Modified a b = Single b | Multiple a b deriving Show
let encode = map (\n -> (head n, length n)) . group
let encodeModified = map modify . encode where
modify (b, 1) = Single b
modify (c, d) = Multiple d c
encodeModified "aaaabccaadeeee"
Prelude Data.List> Prelude Data.List> Prelude Data.List> Prelude Data.List| Prelude Data.List| Prelude Data.List| Prelude Data.List> [Multiple 4 'a',Single 'b',Multiple 2 'c',Multiple 2 'a',Single 'd',Multiple 4 'e']
12. Decode a run-length encoded list.
let decodeModified [] = []
decodeModified (x:xs) = decode x ++ decodeModified xs where
decode (Multiple a b) = replicate a b
decode (Single a) = [a]
decodeModified [Multiple 4 'a',Single 'b',Multiple 2 'c', Multiple 2 'a',Single 'd',Multiple 4 'e']
Prelude Data.List> "aaaabccaadeeee"
13. Run-length encoding of a list
encodeModified "aaaabccaadeeee"
Multiple | 4 | a | Single | b | Multiple | 2 | c | Multiple | 2 | a | Single | d | Multiple | 4 | e |
14. Duplicate the elements of a list.
let dupli = concatMap (replicate 2)
dupli [1,2,3,4]
Prelude Data.List| Prelude Data.List> [1,1,2,2,3,3,4,4]
15. Replicate the elements of a list a given number of times.
let dupli a b = concatMap (replicate b) a
dupli [1,2,3,4] 3
Prelude Data.List| Prelude Data.List> [1,1,1,2,2,2,3,3,3,4,4,4]
16. Drop every N'th element from a list.
let dropEvery a n = map fst $ filter (\(d, i) -> i `mod` n /= 0) $ zip a [1..]
dropEvery "abcdefghik" 3
Prelude Data.List| Prelude Data.List> "abdeghk"
17. Split a list into two parts; the length of the first part is given
splitAt 3 "abcdefghik"
abc | defghik |
18. Extract a slice from a list.
let slice c a b = take (b-a+1) $ drop (a-1) c
slice ['a','b','c','d','e','f','g','h','i','k'] 3 7
Prelude Data.List| Prelude Data.List> "cdefg"
19. Rotate a list N places to the left.
let rotate a n = drop (c n) a ++ take (c n) a where
c d = ((length a) + d) `mod` (length a)
rotate ['a','b','c','d','e','f','g','h'] 3
rotate ['a','b','c','d','e','f','g','h'] (-2)
ghabcdef
20. Remove the K'th element from a list.
let removeAt n a = (a !! (n-1), take (n-1) a ++ drop (n) a)
removeAt 3 "abcd"
c | abd |
21. Insert an element at a given position into a list.
let insertAt x a n = fst b ++ [x] ++ snd b where
b = splitAt (n-1) a
insertAt 'X' "abcd" 2
Prelude| Prelude| Prelude> "aXbcd"
22. Create a list containing all integers within a given range
range a b= [a..b]
range 4 9
4 | 5 | 6 | 7 | 8 | 9 |
23. Extract a given number of randomly selected elements from a list
import System.Random
let rnd_select xs n = do
gen <- getStdGen
return $ take n [ xs !! x | x <- randomRs (0, (length xs) - 1) gen]
rnd_select "abcdefgh" 3
Prelude System.Random| Prelude System.Random| Prelude System.Random| Prelude System.Random> dbc
24. Draw N different random numbers from the set 1..M
let diffSelect xs n = do
gen <- getStdGen
return $ (take n . nub) [ xs !! x | x <- randomRs (0, (length xs) - 1) gen]
diffSelect 6 43
Prelude System.Random> [41,13,4,36,3,33]
25. Generate a random permutation of the elements of a list.
import Data.List
let permu xs = do
gen <- getStdGen
return $ take 10 [ xs !! x | x <- randomRs (0, (length xs) - 1) gen]
permu "asdfasdf"
Prelude System.Random Data.List| Prelude System.Random Data.List| Prelude System.Random Data.List| <interactive>:172:1: error: parse error (possibly incorrect indentation or mismatched brackets)
import Data.List
permutations "asd"
asd | sad | dsa | sda | das | ads |
26. Generate the combinations of K distinct objects chosen from the N elements of a list
let combinations _ [] = []
combinations 0 _ = [[]]
combinations n (x:xs) = map (x:) (combinations (n-1) xs) ++ combinations n xs
combinations 3 "abcdef"
Prelude| Prelude| Prelude| Prelude> ["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]
filter (\x -> ((length x)==3)) $ subsequences "abcdef"
abc | abd | acd | bcd | abe | ace | bce | ade | bde | cde | abf | acf | bcf | adf | bdf | cdf | aef | bef | cef | def |
TODO 27. Group the elements of a set into disjoint subsets.
combinations n = filter (\x -> ((length x)==n)) $ subsequences
group ns xs = map ($ xs) $ map combinations ns
group [2,3,4] ["aldo","beat","carla","david","evi","flip","gary","hugo","ida"]
28. Sorting a list of lists according to length of sublists
sortOn length ["abc","de","fgh","de","ijkl","mn","o"]
o | de | de | mn | abc | fgh | ijkl |
Arithmetic
31. is prime
isPrime p = filterPrime [2..p] where
filterPrime [] = False
filterPrime (x:xs) | x == p = True
| otherwise = filterPrime [y | y <- xs, y `mod` x /= 0]
isPrime 7
Prelude Data.List| Prelude Data.List| Prelude Data.List| Prelude Data.List| Prelude Data.List> True
32. Determine the greatest common divisor of two positive integer numbers
gcd 36 63
9
let mygcd 0 a = a
mygcd a 0 = a
mygcd a b = mygcd b (a `mod` b)
mygcd 36 63
33. Determine whether two positive integer numbers are coprime. Two numbers are coprime if their greatest common divisor equals 1
:set +m
let coprime :: Int -> Int -> Bool
coprime a b = (==1) $ gcd a b
coprime 35 36
Prelude| Prelude| Prelude> True
34. Calculate Euler's totient function phi(m)
totient n = length $ filter (coprime n) [1..n]
totient 10
4
35. Determine the prime factors of a given positive integer. Construct a flat list containing the prime factors in ascending order
let primes = filterPrime [2..] where
filterPrime (p:xs) = p:[x | x <- xs, x `mod` p /=0]
let primeFactors :: Int -> [Int] -> [Int]
primeFactors n (p:xs) | (n < p) = []
| (n `mod` p) == 0 = p:(primeFactors (n `div` p) (p:xs))
| otherwise = primeFactors n xs
primeFactors 315 primes
Prelude Data.List| Prelude Data.List| Prelude Data.List> Prelude Data.List| Prelude Data.List| Prelude Data.List| Prelude Data.List| Prelude Data.List> [3,3,5,7]
36. Determine the prime factors of a given positive integer (2)
import Data.List
primeFactorMult n = map (\x -> (head x, length x)) $ group $ primeFactors n primes
primeFactorMult 315
3 | 2 |
5 | 1 |
7 | 1 |